Large-Scale Preparation of $\alpha, \beta, \alpha, \beta$ Atropoisomer of meso-Tetrakis(o-aminophenyl)porphyrin

Eric Rose,* Mélanie Quelquejeu, Cécile Pochet, Nathalie Julien, Alain Kossanyi, and Louis Hamon

Laboratoire de Chimie Organique, URA CNRS 408, Tour 44, 4 Place Jussieu, 75230 Paris Cedex 05, France

Received May 17, 1993

Summary: A 72% abundance of $\alpha, \beta, \alpha, \beta$ -atropoisomer was observed in the thermal treatment of 4 g of meso-5,10,-15,20-tetrakis(o-nitrophenyl)porphyrin in 800 g of naphthalene at 130 °C. The rt reduction of the nitro groups with SnCl₂ and HCl followed by chromatographic separation and precipitation gives the corresponding tetrakis- $\alpha,\beta,\alpha,\beta$ -amino atropoisomer in 39% yield.

The syntheses of sterically protected iron porphyrin models of natural hemoproteins include the "picket fence",^{1a} pocket",^{1b} and "picnic-basket"^{1c} porphyrins of Collman et al., the "capped" porphyrins of Baldwin et al.,² the "bridged" porphyrins of Battersby et al.,3 the "baskethandle" porphyrins of Momenteau et al.⁴ and Rose et al.,⁵ and the "gyroscope" porphyrins of Rose et al.5a,6 The most frequently employed building blocks of these models are the atropoisomers of tetrakis(o-aminophenyl)porphyrins^{1,4-6} first prepared and separated by Collman et al.^{1a} Nishino et al. described elegant studies of the thermal atropoisomerism of tetrakis(2-nitrophenyl)-7a and -(2-(methoxycarbonyl)-5-nitrophenyl)porphyrins7b in toluene. However, in the first case, 500 mg of a mixture of tetrakis(2nitrophenyl)porphyrin is dissolved in toluene and gives after equilibration and reduction of the nitro group 110 mg of the $\alpha,\beta,\alpha,\beta$ -(2-aminophenyl) atropoisomer.^{7a} We now report an efficient, large-scale preparation of this atropoisomer avoiding high dilution.

Crude tetrakis(o-nitrophenyl)porphyrin TNPPH₂^{1d,g} (4 g) and naphthalene (800 g) were heated at 130 °C for 20 min under vigorous stirring. The hot solution was poured into a concentrated HCl solution (800 mL) at -10 °C. CH2- Cl_2 (2 L) and $SnCl_2 \cdot 2H_2O$ (39 g) were added, and the twophase solution was magnetically stirred for 40 h at rt.⁸ Almost all of the naphthalene was removed in the CH₂Cl₂ organic phase and could be recovered in 95% yield. The

(3) Battersby, A. R.; Hartley, S. G.; Turnbull, M. D. Tetrahedron Lett.

1978, 3169. (4) (a) Gerothanassis, I. P.; Loock, B.; Momenteau, M. J. Chem. Soc., Chem. Commun. 1992, 598. (b) Momenteau, M.; Loock, B.; Tetreau, C.; Lavalette, D.; Croisy, A.; Schaeffer, C.; Huel, C.; Lhoste, J. M. J. Chem. Soc., Perkin Trans. 2 1987, 249.

(5) (a) Boitrel, B.; Lecas, A.; Renko, Z.; Rose, E. New J. Chem. 1989,

13, 73. (6) (a) Boitrel, B.; Lecas, A.; Renko, Z.; Rose, E. J. Chem. Soc., Chem. Commun. 1985, 1820. (b) Boitrel, B.; Lecas-Nawrocka; Rose, E. Tetrahedron Lett. 1991, 32, 2129.

(7) (a) Nishino, N.; Kobata, K.; Mihara, H.; Fujimoto, T. Chem. Lett. 1992, 1991. (b) Nishino, N.; Mihara, H.; Kiyota, H.; Kobata, K.; Fujimoto, T. J. Chem. Soc., Chem. Commun. 1993, 162. (c) Mihara, H.; Nishino, N.; Hasegawa, R.; Fujimoto, T. Chem. Lett. 1992, 1805.

(8) Lecas, A.; Boitrel, B.; Rose, E. Bull. Soc. Chim. Fr. 1991, 128, 407.

Table I. Ratio of the Atropoisomers TNP

T (°C)	concn	αβαβ	$\alpha^{3}\beta$	$\alpha^2 \beta^2$	α4
100	1/200	51	27	18	e
110	1/200	65	21	15	e
130	1/200	72	18	10	e
150	1/200	68	22	11	e
130	1/100ª	46	30	24	e

^a Heterogeneous solution.

time (mn)

Figure 1. HPLC profiles of atropoisomeric mixture of TNPPH₂ after thermal treatment. Key: (a) $\alpha, \beta, \alpha, \beta$ atropoisomer t = 4.91min; (b) $\alpha^2,\beta^2 t = 6.46$ min; (c) $\alpha^3,\beta t = 8.34$ min; the α^4 atropoisomer t > 14 min is not detected after 5 min of thermal treatment. Column: cyano; diameter = 4.6 mm, h = 20 mm, eluant: 52% to 75% THF/heptane; flow rate 1.5 mL/min, detection 420 nm; induction of the $\alpha,\beta,\alpha,\beta$ reached 65% at 100 °C and at 115 °C.

Figure 2. Thermal isomerization of the statistic ratio of crude TNPPH₂ at 130 °C.

HCl phase was extracted twice with 100 mL of CH₂Cl₂ and neutralized slowly with NH4OH until neutral pH. After at least five extractions (CH2Cl2/water) and finally another with magnetic stirring for 1 night, the mixture was chromatographed on silica gel with CH_2Cl_2 and ether (80/ 20), and the $\alpha,\beta,\alpha,\beta$ -tetrakis(o-aminophenyl)porphyrin atropoisomer TAPPH₂ was precipitated by adding petroleum ether to the CH_2Cl_2 solution (39% yield). The vield was not good because it was difficult to extract the aminoporphyrins TAPPH₂ from the brown tin precipitate.

The statistic ratio $1/1/2/4 = \alpha, \beta, \alpha, \beta/\alpha^4/\alpha^2, \beta^2/\alpha^3, \beta$ of crude $\text{TNPPH}_2(50 \text{ mg})$ and naphthalene¹³ (1 g) was heated at 100, 110, 130, and 150 °C under vigorous stirring, and the contents of isomers in the mixture were determined by HPLC (Table I). At 130 °C, 72% of the $\alpha\beta\alpha\beta$ isomer was observed (Figures 1 and 2). The abundance was not as good if the ratio of porphyrin to naphthalene was 1/100

© 1993 American Chemical Society

^{(1) (}a) Collman, J. P.; Gagne, R. R.; Halbert, T. R.; Marchon, J. C.; Reed, C. A. J. Am. Chem. Soc. 1973, 95, 7868. (b) Collman, J. P.; Brauman, J. I.; Collins, T. J.; Iverson, B. L.; Land, G.; Pettman, R. B.; Sessler, J. L.; Walters, M. A. J. Am. Chem. Soc. 1983, 105, 3038. (c) Collman, J. P.; Brauman, J. I.; Fitzgerald, J. P.; Hampton, P. D.; Naruta, Y.; Sparapany, J. W.; Ibers, J. A. J. Am. Chem. Soc. 1988, 110, 3477. (d) Collman, J. P.;
 Gagne, R. R.; Reed, C. A.; Halbert, T. R.; Lang, G.; Robinson, W. T. J.
 Am. Chem. Soc. 1975, 97, 1427. (e) Wuenschell, G. E.; Tetreau, C.;
 Lavalette, D.; Reed, C. A. J. Am. Chem. Soc. 1992, 114, 3346. (f) Groves, J. T.; Neumann, R. J. Am. Chem. Soc. 1989, 111, 2900. (g) Sorrell, T. N. Inorganic Synthesis; McGraw-Hill: New York, 1980; Vol. XX, p 161. (2) Baldwin, J. E.; Cameron, J. H.; Crossley, M. J.; Dagley, I. J.; Hall, S. R.; Klose, T. J. J. Chem. Soc., Dalton Trans. 1984, 1739.

	C1	C2	C3	C4	C5	C6	Cα	Cβ	Cmeso
TNPPH₂∆ª	136.24	151.96	124.06	e	e	137.09	131°	e	115.37
TAPPH₂ ^{a,f}	146.90	115.37	129.70	134.90	126.91	116.92	132.0°	128.43	115.93
b,f	146.93	115.55	130.08	135.02	126.63	116.65	131.6°	128.83	116.85
TPPH₂ ^d	141.7	134.0	126.1	127.5	134.0	134.0	145.8°	130.6	119.6

^a CDCl₃. ^b Me₂CO-d₆. ^c br. ^d TPPH₂ = tetrakis $\alpha,\beta,\gamma,\delta$ -(phenyl)porphyrin.¹² ^e 129.81 or 131.20. ^f $\alpha,\beta,\alpha,\beta$ -atropoisomer.

Figure 3. ¹³C NMR data of the $\alpha\beta\alpha\beta$ TNPPH₂ atropoisomer A and TAPPH₂.

Table II.	Rate Constants (k min ⁻¹) and Free Energy of						
Activation (kJ/mol)							

T (°C)	k1	k_1	k2	k_2	k3	k_3
100	0.0887	0.0042	0.0141	0.0302		
150	0.7144	0.0055	0.1420	0.4385	0.2392	0.1360
		ΔH^*	ΔS*		ΔG^*	
k ₂ 57.3		57.3	-162.6		122	
k_2		66.9	-130.5		119	
k_1		51.4		-163.0		116
k_1		3.78ª	-316.2ª		130	

^a These values are too difficult to obtain because the amount of the α^4 atropoisomer is too small.

Table III. 500-MHz ¹H NMR of TNPPH₂ and TAPPH₂

	H3	H4	H5	H6	H¢	NH
α.β.α.β TNPPH2ª	8.44 (m)	7.97 (m)	7.97 (m)	8.30 (m)	8.62	-2.57
Ь	8.43 (m)	7.98 (m)	7.98 (m)	8.37 (m)	8.66	-2.65
c	8.46 (m)	7.99 (m)	7.99 (m)	8.17 (m)	8.93	-2.34
а. <i>в.а.в</i> -ТАРРН ₂ ª	7.88	7.59	7.17	7.09	8.89	-2.70
$\alpha^2 \beta^2 a$	7.83	7.60	7.15	7.12	8.89	-2.70
α ⁸ ,β •	7.85	7.59	7.16	7.11	8.89	-2.70
α ^{4a}	7.84	7.59	7.17	7.07	8.89	-2.70

^a CDCl₃. ^b CD₂Cl₂. ^c Py-d₅.

by weight because the mixture was not homogeneous (Table I). Thermal isomerization of the $\alpha,\beta,\alpha,\beta$ nitro atropoisomer was studied; the same ratio $0/72/11/17 = \alpha^4/\alpha,\beta,\alpha,\beta/\alpha^2,\beta^2/\alpha^3,\beta$ was obtained after 20 min. Kinetic studies of the isomerization gave the first-order rate constants k and the free energy of activation ΔG^* using the hypothesis of Hatano et al. (Table II).⁹

It is well known that the reduction of the nitro compounds TNPPH₂ at 60 °C yields the amino isomers TAPPH₂^{1d} but it is possible to do it at rt.⁸ Reduction at rt for 3.5 h of the thermal isomerization product obtained at 130 °C gives the corresponding aminoporphyrins atropoisomers. But unexpectedly, a compound A (5% yield) with the highest R_f value (0.84 in CH₂Cl₂ + ϵ NH₃) appeared on a TLC plate in addition to the four expected amino atropoisomers which are well described in the literature.^{1d} No intermediate reduction products are observed. Reduction of A at rt yielded quantitatively the $\alpha,\beta,\alpha,\beta$ TAPPH₂ atropoisomer proving definitively that no rotation of the phenyl rings occurs at rt. ¹H and 2D-COSY NMR of this nitroisomer permitted us to assign the chemical shifts of each proton and to compare them with other NMR data (Table III).¹⁰ By irradiation of the arene signal at the lowest field, the decoupled carbon C-2 chemical shift does not give a doublet which would be in a good agreement with a low-field signal of the H-3 proton ortho to a nitro group (Figure 3). But knowing that the ¹³C signal of the carbon ortho to the nitro group of nitrobenzene resonates at approximately 123–124 ppm,¹¹ by irradiation of the 8.30 signal, the resonance at 129.81 ppm becomes a singlet without modification of the C3 carbon resonance at 124.06 ppm. This experiment definitively confirms that the H-3 proton signal resonates at 8.44 ppm. A is thus the $\alpha, \beta, \alpha, \beta$ -tetranitrophenylporphyrin (Figure 3). This means that the atropoisomer \mathbf{A} is more difficult to reduce than the other isomers.

In conclusion, the useful $\alpha,\beta,\alpha,\beta$ -tetrakis(2-aminophenyl)porphyrin atropoisomer can be prepared very easily by appropriate atropoisomerization of the mixture of isomers at 130 °C in naphthalene followed by reduction at rt. The 72% abundance of the thermodynamically preferred $\alpha,\beta,\alpha,\beta$ atropoisomer can be explained by dipole-dipole repulsion or by steric repulsion between the NO₂ groups through the space above the porphyrin plane.⁹ This method should encourage the design and use of functional porphyrin derivatives because this minor isomer can now be prepared on a large scale in good yield.

Acknowledgment. We thank Prof. N. Platzer for NMR advice and useful discussions and B. Desmazières for assistance with HPLC studies.

⁽⁹⁾ Hatano, K.; Anzai, K.; Kubo, T.; Tamai, S. Bull. Chem. Soc. Jpn. 1981, 54, 3518.

^{(10) (}a) Perlmutter, P.; Rose, M.; Sheman, P. Tetrahedron Lett. 1988, 29, 1427. (b) Boitrel, B.; Camilleri, E.; Fleche, Y.; Lecas, A.; Rose, E. Tetrahedron Lett. 1989, 30, 2923.

 ⁽¹¹⁾ Tables of spectral data for structure determination of organic compounds: Chemical Laboratory Practice; Springer-Verlag: Berlin, Heidelberg, New York, Tokyo, 1983; p C120.
 (12) The Porphyrins, Physical Chemistry; Dolphin, D., Ed.; Academic

⁽¹²⁾ The Porphyrins, Physical Chemistry; Dolphin, D., Ed.; Academic Press: New York, 1978; Part A, Vol. III, p 43.
(13) For solubility reasons, xylene, 1,2,3- or 1,3,5-trimethylbenzene,

⁽¹³⁾ For solubility reasons, xylene, 1,2,3- or 1,3,5-trimethylbenzene, and di-n-butyl ether are not efficient: only naphthalene can perform this atropoisomerization in a 1/200 ratio by weight which can be compared with the 1/4000 ratio of Nishino in toluene.^{7a}